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Velocity redistribution in curved rectangular channels 
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The main velocity redistribution in steady flow through curved conduits of shallow 
rectangular cross-section is considered. Its mechanism is analysed using a mathe- 
matical model of steady incompressible laminar flow in coiled rectangular pipes. The 
transverse transport of main-flow momentum by the secondary circulation is shown 
to be the principal cause of this velocity redistribution. The importance of the side- 
wall regions, even in shallow channels, is assessed and the neglect of the influence of 
the side walls in the commonly applied simplified models of flow through shallow 
curved channels is shown to be strongly limiting in case of long bends with a rect- 
angular cross-section. 

1. Introduction 
Curved conduit flows are encountered in many engineering problems, from heat 

exchangers to meandering rivers. Until some ten years ago, these flows could hardly 
be predicted mathematically. Only specific classes of problems allow for an analytical 
solution (Dean 1928a; Adler 1934; It6 1951) and otherwise only certain aspects of 
the flow, such as the secondary circulation in shallow channels far from the side walls, 
can be treated without computer (Boussinesq 1868 and many others afterwards). 
Recent advances in computational fluid dynamics, however, have opened the way to 
fully three-dimensional computations of this type of flow (Patankar, Pratap & 
Spalding 1974,1975; Leschziner & Rodi 1978). This provides the possibility of detailed 
and accurate flow predictions, but also of a thorough analysis. Hitherto, predictions 
have been extensively reported in the literature, but little attention has yet been paid 
to analysis. Still such an analysis can be important, especially when it is necessary 
to simplify the mathematical description of this complex flow. This need of simplifi- 
cation is felt in river engineering, for instance, where the mathematical prediction of 
flow and bed topography in alluvial river bends requires multiply repeated flow 
computations with continually changing bottom configurations, so that a fully three- 
dimensional flow model would become too expensive. Introducing simplifications in 
the mathematical model, however, requires a proper understanding of the essential 
phenomena and an analysis of the flow is indispensable then. 

The most striking feature of curved conduit flow, the secondary circulation, has 
been amply considered in the literature (Rozovskii 1961) and it seems to be properly 
understood, at least qualitatively. The existing analyses of the systematic deformation 
of the main velocity distribution in a bend, however, give less satisfactory results, 
mainly because they are based on oversimplified descriptions of the flow, e.g. poten- 
tial flow (Boss 1938; Kamiyama 1966); wall-layer approximation (Einstein & Harder 
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1954; Muramoto 1965); shallow-channel approximations (Van Bendegom 1947; 
Rozovskii 1961; De Vriend 1976; Falcbn 1979; and many others). Furthermore, amost 
important cause of main velocity redistribution, the convective transport of main 
flow momentum by the secondary flow, is often disregarded or inappropriately in- 
corporated. The present analysis of the main velocity redistribution in curved shallow 
channels is carried out using a mathematical model of fully developed laminar flow in 
curved rectangular pipes. I n  view of the relevance t o  river engineering suggested 
before, this approach may seem rather inappropriate; in river bends the flow is tur- 
bulent, it often does not reach its fully developed curved stage, natural river channels 
are not rectangular and the water surface is free. 

The differences between laminar and turbulent flow are obvious. They make it 
impossible t o  describe the time-mean velocities and pressures by the same mathe- 
matical system as in case of laminar flow. Still there are points of qualitative resem- 
blance between the two flow types. Firstly, in many turbulent flows the net convective 
exchange of momentum due to  the velocity fluctuations can be modelled on the analogy 
of molecular diffusion (Boussinesq hypothesis). The coefficient of turbulent diffusivity 
(turbulence viscosity) in such models, though varying over the flow field, qualitatively 
corresponds with the molecular viscosity. Although it must be doubted whether the 
Boussinesq hypothesis is valid for every detail of turbulent flow in curved ducts, 
mathematical models using a turbulence viscosity have been shown to yield good 
predictions of the main velocity distribution in that case (Pratap & Spalding 1975; 
Leschziner & Rodi 1978). I n  addition, both laminar and turbulent flow in curved 
conduits show the characteristic helical flow pattern, caused by the same mechanism 
in either case. Besides, the redistribution of the main velocity along a bend shows the 
same features for laminar and turbulent flow (cf. Patankar et al. 1974, 1975). In view 
of these points of resemblance it seems justifiable to utilize a mathematical model of 
laminar flow for a qualitative analysis of the mechanism of main velocity redistribu- 
tion in bends, both for laminar and for turbulent flow, provided that the Reynolds 
number in case of turbulent flow is based on a characteristic value of the turbulence 
viscosity rather than on the molecular viscosity. 

The main flow in river bends seldomly reaches its fully developed stage and, if it 
does so, it will be only in the last part of a long bend (Muramoto 1965). Hence a 
mathematical model of fully developed curved flow is definitely unsuited to a description 
of the ffow in a river bend. On the other hand, the convective influence of the secondary 
flow on the main velocity takes place in cross-stream planes and the streamwise 
variations of the main flow are not likely to play an important role in it. Therefore a 
fully developed flow model can be utilized to analyse the mechanism of this influencing. 

The cross-sectional shape of curved alluvial river channels is far from rectangular, 
with a mildly sloping point bar in the inner part of the bend and a scour hole in the 
outer part, which gives rise to a rather steep concave bank. On the other hand, most 
laboratory experiments on the flow and the bottom configuration in river bends have 
been carried out in flumes with vertical sidewalls and it will be shown hereafter that 
for a proper interpretation of the measured data the effect of these vertical walls on 
the flow must be taken into account. Therefore the present analysis is made for 
rectangular channels and an attempt will be made to  transfer the conclusions to 
channels of a more natural shape. 

For the flows to be considered here the Froude number is rather small. This implies 
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that the free water surface can be approximated as a frictionless flat plate (rigid-lid 
approximation; cf. Leschziner & Rodi 1978), so that in case of a rectangular channel 
the surface is a plane of symmetry parallel to the bottom. Then the velocity field is 
the same as in the lower half of a rectangular pipe with a height of twice the channel 
depth. 

Although it may be evident that a mathematical model of fully developed laminar 
flow in curved rectangular ducts cannot serve as a model of the flow in river bends, 
the foregoing arguments justify a qualitative analysis of the mechanism of main 
velocity redistribution due to the secondary flow in curved channels on the basis of 
this relatively simple and well-documented flow case. This flow case allows for the 
numerical solution of the complete steady-state Navier-Stokes equations without 
extremely high computer costs. Hence it is possible to investigate the influence of 
the various physical phenomena involved by manipulating the relevant terms in the 
equations (cf. Humphrey, Taylor & Whitelaw 1977). 

L B 

FIGURE 1. Definition sketch. 

2. Mathematical model 
For the mathematical description of the flow situation to be considered (figure 1) 

a cylindrical co-ordinate system ( R ,  $, z )  is adopted, with the z axis through the centre 
of curvature of the channel axis and directed vertically upwards. Then the velocity 
components, v,, v6 and v2 and the pressurep are described by a system of four differen- 
tial equations representing the conservation of mass and R ,  $ and z momentum, with 
an appropriate set of boundary conditions. After the normalization 

P V 2  
V$ = vu, O R  = svv, us = SVur, p+pgz = - ij, Re 

(V = overall mean velocity, 6 = curvature ratio d/Rc,  d = mean depth of flow, 
R, = radius of the channel axis, p = mass density of the fluid, g = acceleration due 
to gravity, Re = Reynolds number Vd/v, v = kinematic viscosity of the fluid), this 
system of equations reads 
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with 

The boundary conditions at  the (horizontal) bottom and at  the vertical side walls are 

(7) 

(B = channel width). The water surface is approximated by a rigid frictionless plate 
parallel to the bottom, so that it is equivalent to the horizontal plane of symmetry 
in a pipe of height 2d. The relevant boundary conditions are 

B 
u = O ,  21-0, w = O  at c = - 1  andat  ( = + -  

2d 

au av 
a5 a5 
- = O ,  - = O ,  w = O  at 6 = 0 .  

Although the system (3)-(8) can be solved in this form (Joseph, Smith & Adler 
1976), the radial and vertical momentum equations and the equation of continuity 
for the secondary flow will be reformulated in terms of a stream function in order to 
reduce the number of equations to be solved simultaneously. As becomes evident 
from equations ( 5 )  and (6), the combination of radial.pressure gradients and centri- 
petal accelerations is the only source of secondary flow. As this source is almost pro- 
portional to  Re, the stream function of the secondary flow is defined by 

Thus the equation of continuity for the secondary flow is satisfied and the momentum 
equations (5) and (6) can be rewritten, in terms of $ and the secondary-flow vorticity 
w = aw/ag - av/ag, 

whereas the definition of w can be elaborated to 

The boundary conditions for v and w lead to 

The longitudinal momentum equation (4) then becomes 
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where i = -a@/a# is a constant to be determined from the integral condition of 
continuity B 

/ B ’ 2 d  -B/2d d [ l o  -1 udc= Z’ 

The system (lo)-( 15) with the boundary conditions 

(16) 
au 

u=O at 6=-1 and - = 0  at [ = O  

can be solved by an iterative procedure (Cheng, Lin & Ou 1976). In the present model 
the number of equations is further reduced by combining equations (10) and (1 1) to 
one fourth-order equation for @ (see also Cheng & Akiyama 1970). Thus the problem 
of the boundary conditions for w (Roache 1972) is avoided. 

Once u, w and @ are known, the pressure follows from 

a5 

with the boundary conditions 

% = o  at C = O .  

Numerical details of the solution procedure of the system (lo)-( 19) will not be given 
here, all elements being well known. Besides, equivalent or even more extensively 
applicable mathematical models have been described before (Cheng 8z Akiyama 
1970; J oseph et al. 1975; Cheng et al. 1976; see also Collins & Dennis 1975, 1976). 

For the same reason it may suffice here to state that the model was verified in three 
different ways, viz.: 

(i) by comparing its result for small values of the Dean number De = Re84 with 
analytical solutions given by It6 (1951), Cuming (1952) and De Vriend (1973); 

(ii) by comparing its results with those from the other numerical models mentioned 
before ; 

(iii) by comparing its results with measured data given by Mori, Uchida & Ukon 
(1971). 
It became evident from these comparisons that for Dean numbers up to about 60 the 

model gives a good description of fully developed laminar flow in curved conduits 
with a rectangular cross-section of aspect ratio d / B  < 0.5. For further details of this 
verification, see De Vriend (1978). 

It should be noted that the mathematical model described here is in general inferior 
to models solving equations (10) and (1 1) instead of the fourth-order equation for $, 
in so far that convergence is limited to much smaller values of the Dean number (see, 
for instance, Cheng et al. 1976; also Collins & Dennis 1975, 1976). The present investi- 
gations, however, are not aiming at the development of an efficient and sophisticated 
mathematical model of fully developed curved laminar flow, but rather at  the analysis 
of the main velocity redistribution in a channel bend. From that point of view, the 
present model is also acceptable, at. least within its range of validity (De c 60). The 
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range of effective Dean numbers in meandering rivers can be estimated as follows. 
Engelund (1974) states that the mean turbulence viscosity in such rivers is approxi- 
mately equal to 0.077Gd, where V, denotes the mean wall friction velocity. Hence 
the effective Reynolds number can be taken 13 VIV,, which varies in practice between 
100 and 250. According to  Leopold, Wolman & Miller (1964), the ratio RJB for 
meandering natural rivers ranges from 2 to  3, so that for channels with d/B c 0.1 
the effective Dean number ranges up to about 55. With some reserve as to the equiva- 
lence of the Dean number for laminar flow and the effective Dean number for turbulent 
flow, it can be concluded that the present model qualitatively covers the greater part 
of turbulent flows in natural river bends. 

3. Main velocity redistribution 
The longitudinal momentum equation (14) differs from its straight channel equiva- 

(20) 
lent a 2  a 2  

at2 
0 = tsi+Viu, v; = p+- 

at the following points: 
(i) the factor l /r in the longitudinal pressure gradient term, 
(ii) the extra diffusion terms arising from the curvature of the co-ordinate system, 
(iii) the convection terms. 

-5  -4 -3 -2 - 1  0 I 2 3 4 5  

- i  

FIGURE 2. Potential flow effect. 

Each of these differences causes deformations of the main velocity distribution with 
respect to  its straight channel shape. The combination of the first two differences 
gives rise to what is called the potential flow effect: the velocity distribution is skewed 
inwards and away from the side walls it approaches the free-vortex distribution (see 
figure 2).  The convection terms, the importance of which is indicated by the square 
of the Dean number, act in an opposite sense: the main velocity distribution tends to 
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FIGURE 3. Influenco of the Dean number on the main velocity dist.ribiition 
in a shallow channel. (a )  A t  tho surfitcc; (b) in the centre-line. 

be skewed as De increases (figure 3a).  In addition, the vertical distribution becomes 
flatter and a t  higher De the velocity maximum even lies below the surface (figure 3b).  
The mechanism of the convective redistribution of the main velocity will be analysed 
further, making use of the mathematical model described in 5 2. With a view to the 
mathematical modelling of curved shallow channel flow, the influence of the various 
terms in the longitudinal momentum equation will be investigated and a physical 
interpretation of the observed phenomena will be given. 

4. Analysis for low-Dean-number flow 
Low-Dean-number flow is suited for a first analysis of the convective redistribution 

of the main velocity, since it allows for a relatively simple mathematical approach in 
the form of perturbations of the zero-Dean-number solution with De2as a perturbation 
parameter. Hence 

m m co 

SL = C De2kuu,; i = DeZkii,; $ = C De2%Jru,. (21) 
k = O  k = O  k = O  

If lateral diffusion is neglected, the first two terms of the series for u are (rf. De 

- Vriend 1971) 

u = fi(c)+, 20 aPo zfl(cJ], (22) 

in which the overbars denote depth-averaging and the functions fi(c), f2(c) are poly- 
nomials in erepresented in figure 4. The depth-averaged quantities in (22) are given by 
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FIGURE 4. Low-Dean-number perturbations of the main velocity: ( a )  due to radial convect.ion : 
( b )  due to vertical convection (--, pcrtiirhation; - - -, parahola witli the same depth-averaged 
value ; - * -, perturbation function). 

I I 

FIGURE 5. Main-flow isovels (-) and secondary-flow streamlines (-) 
in the inner wall region of a shallow channel ( d / B  = 0.1). 

The contribution of the secondary-flow convection to 5, consists of two parts, due to 
the radial and the vertical velocity component, respectively. These two parts are 
negative near the inner wall and positive near the outer wall, whereas they almost 
vanish in the central part of the cross-section. Even though lateral diffusion is not 
negligible near the sidewalls, this readily shows the tendency of secondary-flow con- 
vection to reduce the depth-averaged main velocity near the inner wall and to increase 
i t  near the outer wall. Similarly, equation (22) and figure (4) show the radial velocity 
component to give rise to a flattening of the vertical distribution of u as long as 
Z,/a[ + S r - G ,  is relntirelp weak. 
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A physical interpretation of the foregoing can be given by considering the main- 
flow isovels and the streamlines of the secondary circulation for the zero-Dean-number 
limits uo and +o, shown for the inner wall region in figure 5. Throughout the region 
shown in this figure uo increases along the streamlines of the secondary flow. This 
implies that everywhere in this region the fluid conveyed t o  a point by the secondary 
flow has a longitudinal momentum deficit with respect to the undisturbed flow in 
that point. As a consequence, an overall reduction of the main velocity with respect 
to uo occurs in the inner wall region. The opposite holds for the outer wall region, 
where the fluid conveyed by the secondary flow has a momentum surplus and the 
main velocity increases. The inclinations ai and us of the isovels and the streamlines 
in figure 5 are given by 

and tanu, = - au, auo 
t ana i= - -  - 

ac I 85 
whence it follows that 

(24) 

Therefore, if the term 6r-luov0 is neglected,? the magnitude of the convection terms 
in the longitudinal momentum equation is proportional to the local intensity of the 
secondary flow, the local main velocity gradient and the sine of the angle of inter- 
section between the main-flow isovels and the secondary-flow streamlines. According 
to figure 5,  the streamlines and the isovels intersect at  very small angles near the 
bottom, whereas they are almost perpendicular near the surface. The secondary-flow 
intensity is also somewhat smaller in the lower part of the cross-section and the 
main velocity gradient is of the same order of magnitude everywhere, a t  least close 
to the wall. Hence the convection terms will be largest in the upper part of the cross- 
section and the reduction of the velocity will be strongest there. Since the shape of 
the main velocity profile would not be affected if the sum of the convection terms were 
constant along a vertical line, this implies that the velocity profile becomes flatter near 
the surface. 

The redistribution of the main velocity works out as a deformation of the main-flow 
isovels in the direction of the secondary flow. Essentially the same phenomenon is 
found in turbulent flow through straight non-circular conduits, where secondary cir- 
culations occur, as well. The deformation of the main-flow isovels can be explained 
in the same way as was done here (Prandtl 1952; see also Schlichting 1951; Reynolds 
1974). 

5. Analysis for intermediate-Dean-number flow 
A t  small Dean numbers only small and local perturbations of the zero-Dean-number 

velocity occur, as was shown in $ 4 .  As the Dean number increases, however, the 
perturbations grow stronger and lateral interaction grows more and more important, 
until the influence of secondary-flow convection is felt throughout the cross-section, 
whether this is shallow or not. The range of Dean numbers at which this lateral inter- 
action process develops will be called intermediate. The upper bound of this range 

If this term, originating from the radial divergence of the co-ordinate system, is taken into 
account. the same reasoning holds for lines of constant TU,, rathrr than for the isorrls. 
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will be taken at  the Dean number at which an additional longitudinal vortex starts 
to develop near the outer wall (cf. 5 6). 

The difference between the low and intermediate Dean-number ranges is reflected 
by the mathematical approach: the perturbation method described in 5 4 applies no 
longer. The somewhat more crude similarity approximation 

u(5,5) = 'ii(5) F(5L $(& 5 )  = Q(5L (26) 

-5.0 -2.5 0 2.5 5.0 0' -0.5 --I.O 
- t  r+ 

(4) ( b )  

FIGURE 6. Similarity of the main velocity distribution for 6 = 0.04 and d / B  = 0.1. (a) Vertical 
similarity (- -, 5 = - 0.9; - . -, 5 = - 0.5;  - - -, 5 = 0) ; ( 6 )  radial similarity (-, 6 = 0 ;  
- * -, 5 = -4.5; - - -, 6 = 4.5). 

however, holds for the greater part of the cross-section at intermediate De as well 
(see figure 6). Hence the mathematical analyses of the horizontal and the vertical 
deformations of the main velocity distribution can be separated. The horizontal de- 
formations are described by the depth-averaged longitudinal momentum equation 

in which the subsequent terms will be named radial convection term, vertical con- 
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vection term, longitudinal slope term, radial diffusion term and bottom shear stress 
term, respectively. If the solutions of F, c f  and $ computed by the complete model 
are introduced as known functions, U and i are the only unknown quantities in (27). 
They can be solved from this equation, the integral condition of continuity (15) and 

B the boundary conditions 
i i = O  at t =+ -  

2d' (28) 

- 
U I  I I I I 

-5.0 -2.5 0 2.5 5.0 
I 1 -  
I I  
I I  
I 1  

2.5 - 

I I 

95.0 --I6 0 2.5 5 .O 

FIGURE 7.  Analysis of the depth-averaged main velocity redistribution for 8 = 0.04 and 
d / B  = 0.1. (a) Influence of secondary-flow convection, radial diffusion and bed shear stress 
(--, complete depth-averaged equation; - * -, vertical convection neglected; - - , radial 
convection neglected; - * . -, radial diffusion neglected for - 4 < < 4; . . . , bed shear stress 
neglected) : ( b )  lateral interaction due to radial convection for De = 60 (--, complete depth- 
averaged equation; ..., w = 0 for all [; - - -, w = 0 and - * -, u + 0 with radial diffusion 
neglected for - 4  > 6 > 4 and ut = 0 in the indicated region). 

Figure 7 shows the influence of the convection, diffusion and bottom shear stress 
terms in equation (27). It gives rise to the following observations: 

(i) if the vertical convection term is neglected, the depth-averaged velocity distri- 
bution hardly differs from its zero-Dean-number limit (see figure 7 a) ; 

(ii) if the lateral convection term is neglected, lateral interaction is almost absent, 
especially in the central region (see figure 7 b ) ;  

(iii) the lateral interaction due to radial convection is exclusively outward (see 
figure 7 b); 

(iv) neglecting the radial diffusion term away from the side walls has hardly any 
influence on ?I (see figure 7 n )  : 
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(v) neglecting the bottom shear stress gives rise to  much less uniform and a t  higher 
De much more strongly skewed distributions of ii (see figure 7a). 
Hence it is concluded that the vertical convection term is the main cause of the local 
decrease of ii near the inner wall and the local increase near the outer wall, whereas 
radial convection provides for an outward lateral interaction. Consequently, the 
region influenced by the local velocity reduction near the inner wall is extended out- 
wards until it covers the greater part of the cross-section and the region influenced 
by the local velocity increase near the outer wall is compressed against the wall (see 
figure 7a ,  the influence of neglecting the radial convection term). If the bottom shear 
stress were absent, this combined effect of vertical and radial convection would lead 
to  an almost linear increase of ii with E in the central region. The bottom shear stress, 
however, tends to  attenuate the non-uniformities. As a consequence, the distribution 
of ii is deflected towards an almost horizontal asymptote. 

A similar procedure can be followed t o  analyse the deformation of the vertical 
distribution function F(g) ,  which is described by the longitudinal momentum equation 

with F = F'/P (F = 1 by definition) and the boundary conditions 

The subsequent terms in (29) will be referred to as the radial convection term, the 
vertical convection term, the longitudinal slope term, the radial diffusion term and 
the vertical diffusion term, respectively. The quantities C, ii and $ are derived from 
the complete model, so that F can be solved from the above system. 

Figure 8 leads to the following conclusions as to  the influence of the various terms 
in equation (29) : 

(i) in the inner wall region the vertical convection term causes a decrease of F near 
the bottom and an increase near the surface; the reverse occurs in the outer wall 
region ; 

(ii) the radial convection term acts in the opposite sense and its effect is consider- 
ably stronger, near the side walls and especially in the central region, where its in- 
fluence on F is the same as near the inner wall; 

(iii) the influence of radial diffusion and the no-slip conditions a t  the side walls is 
rather small. 
As far as the side-wall regions are concerned, these observations qualitatively agree 
with the findings of $4.  I n  the central region, where F is hardly deformed at  low 
Dean numbers, the flattening a t  higher De must obviously be attributed to  radial 
convection. 

The physical explanation of the local deformations of the main velocity distribution 
near the side walls is essentially the same as for low-Dean-number flow ($4). Away 
from the side walls the convective transport of momentum is mainly horizontal, out- 
ward in the upper half of the cross-section and inward in the lower half, such that there 
is a net outward momentum transport. With the bottom shear stress as a damping 
factor, this net outward transport gives rise to  a retarded outward expansion of the 
low-velocity region near the inner wall. The velocity peak is compressed against the 
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FIGURE 8. Analysis of the vertical distribution of the main velocity for 6 = 0.04 and d l B  = 0.1 
(--, complete vertical equation; - - -, vertical convection neglected; - . -, radial convection 
neglected ; - . -, radial diffusion neglected). 

outer wall, where it is partly damped by viscous forces. As a consequence, the main 
velocity distribution tends to be skewed outwards and hence radial convection causes 
a flattening of the vertical profile of u, the fluid conveyed from further inside giving 
rise to a momentum deficit in the upper half of the cross-section and the fluid con- 
veyed from further outside causing a momentum surplus in the lower half (cf. $4). 

6. High-Dean-number flow 
As was shown in 9 2, the flow at effective Dean numbers (based on the mean turbu- 

lence viscosity instead of the molecular one) higher than 50 is not quite relevant to 
the mathematical modelling of the flow in river bends. Still there is one aspect of this 
flow that deserves some further attention, even from this river-engineering point of 
view. 

If the Dean number is gradually raised from 50 to 60, a reverse secondary circulation 
suddenly develops near the surface in the outer wall region (cf. figure 9). Although 
the solution procedure in the present mathematical model becomes poorly convergent 
at Dean numbers higher than 60, other models, based on procedures that work well 
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---- . ,-- 

. 
Outer wall 

( d )  
Outer wall Inner wall 

( b )  
Inner wall 

FIGURE 9. Transition from single to double helical flow pattern in a square pipe ( d / B  = 0.5 
and 6 = 0.1 ; --, present model; - - -, Joseph et al. (1975)). (a) Main-flow isovels at De = 47.4; 
( b )  streamlines of the secondary flow at De = 47.4; ( c )  main-flow isovels at De = 53.8; (a) 
streamlines of the secondary flow at De = 53.8. 

in this high-Dean-number range, have shown that this additional vortex is not 
spurious (Joseph et al. 1975; Cheng et al. 1976). Besides, a similar circulation was 
observed in several laboratory experiments on turbulent flow in curved channels, 
even at effective Dean numbers much smaller than 60 (Yen 1965; Rao 1975; Choudhary 
& Narasimhan 1977; DeVriend & Koch 1977; De Vriend 1979).This phenomenon seems 
to  occur in natural rivers also (Bathurst, Thorne & Hey 1979). I n  these turbulent 
flows, however, the mechanism underlying this reverse secondary circulation is com- 
plicated by the effect of turbulence anisotropy near the concave bank. This anisotropy 
generates a streamwise vorticity of a similar kind as the vorticity of the additional 
secondary circulation meant here (see, for instance, Perkins 1970), thus enhancing 
the tendency of the secondary circulation to split up. 

The reverse circulation is mostly restricted to  the outer wall region (cf. Rao 1975), 
so that it is of no importance to  the mathematical modelling of the flow in the other 
parts of the cross-section (see $ 5 ) .  On the other hand, it influences the shear stress 
a t  the outer wall (bank) and hence it may be important to the meandering of natural 
rivers. Therefore it is worth while to  try and find a t  least a qualitative explanation of 
this phenomenon. At the end of the intermediate-Dean-number range the main 
velocity maximum in a vertical lies below the surface (see §5) ,  so that the vertical 
derivative of u is negative near the surface. Consequently, the source term in the 
secondary-flow equation (10) is negative and hence the stream function y? tends to 
become negative there, as well. As long as the main velocity shows an outward increase, 
the reverse secondary circulation corresponding t o  negative y? will be attenuated: 
the momentum surplus caused by fluid convection from further outwards tends to 
make the velocity derivative and the source term in (10) positive, again. In  the outer 
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wall region, however, the main velocity sharply decreases towards the wall. Hence 
the reverse circulation will intensify itself and its convective influence will give rise 
to a further reduction of the main velocity at the surface. This also explains the 
abruptness of the transition from the single-vortex to the double-vortex pattern: 
once the reverse circulation comes into existence near the outer wall, it intensifies 
itself as far as viscous forces permit. 

The foregoing suggests that the development of the additional vortex is a matter of 
hydrodynamic instability. On closer investigation the underlying mechanism appears 
to be essentially the same as for the so-called Goertler vortices in the boundary layer 
along a concave wall (Gortler 1940; see also Schlichting 1951), for the instability of 
laminar flow in an infinitely deep narrow curved channel (Dean 19283) and for the 
so-called Taylor vortices between two concentric rotating cylinders (Taylor 1923; 
see also Schlichting 1951). Each of these phenomena is characterized by a dimension- 
less number of the same nature as the Dean number. 

7. Concluding remarks 
Once again it should be stressed that the present analysis only has qualitative 

relevance to river flows. It gives an indication of how the secondary flow influences 
the main flow and what is important when incorporating this effect in a mathematical 
model of flow in curved shallow channels. It leads to the conclusion that the secondary 
circulation in curved channel flow can give rise to considerable deformations of the 
main velocity distribution at intermediate and high values of the Dean number. 
(Apart from that, these deformations are reflected in other phenomena, such as an 
overall increase of the boundary shear stress, often indicated as ‘bend resistance’.) 
Another point that becomes evident from the foregoing is that the vertical velocity 
componenG, and hence the horizontal distribution of 3, must be properly represented 
in a mathematical model that is to describe the main velocity redistribution due to 
the secondary flow in a long bend. This is readily shown by the depth-averaged longi- 
tudinal momentum equation (27). It is the transverse variation of the convective 
transport $B that figures in this equation, so an improper description of the trans- 
verse distribution of $ has a direct influence on the longitudinal momentum distri- 
bution and hence on B. 

For rectangular channels and channels with a flat bottom and steeply sloping banks 
this implies that the side-wall regions, and especially the inner wall region, play an 
important role in the main velocity redistribution process, the greater part of the 
transverse variation of being concentrated near the side walls. Consequently, 
mathematical models limited to the central region of shallow channels (Van Bendegom 
1947; Engelund 1974; De Vriend 1976; Falc6n 1979) will fail in these cases as soon 
as secondary-flow convection becomes important. Therefore verification of such 
models on the basis of laboratory experiments in rectangular channels, which is a 
rather common practice, should be avoided, unless the effective Dean number is small 
or the bends are so short and shallow that the influence of secondary flow convection 
has no opportunity to extend far from the side walls (in weakly meandering channels, 
for instance; see Gottlieb 1976). 

In  shallow channels with mildly sloping banks the side walls, if present at all, are 
much less important. Instead of being caused by the lateral diffusion in combination 
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with the no-slip conditions a t  the side walls, the transverse variations of the main 
velocity and the secondary flow are mainly due to  the transverse variation of the 
depth of flow then. These variations are spread over a much wider region and allow 
for a mathematical model that disregards lateral diffusion and side-walI effects (Kalk- 
wijk & De Vriend 1980). On the other hand, computations with such simplified 
models have made clear that, even in gently curved shallow channels with mildly 
sloping banks, a point bar in the inner part and a pool in the outer part of the bend, the 
influence of secondary flow convection can have a considerable effect on the main 
velocity distribution (Kalkwijk & De Vriend 1980). 

The investigations reported herein are part of a research project on the flow and the 
bed topography in alluvial river bends, incorporated in the joint hydraulic research 
programme T.O.W. (Toegepast Onderzoek Waterstaat), in which Rijkswaterstaat, the 
Delft Hydraulics Laboratory and the Delft University of Technology participate. 
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